recursion scheme	adjunction	conjugates	para-hylo equation	algebra
(hylo-shift law)	$Id \dashv Id$	$\alpha \dashv \alpha$	$x = a \cdot (id \triangle D x \cdot \alpha C \cdot c) : A \leftarrow C$	$a: C \times D A \to A$
mutual recursion	$\Delta\dashv(\times)$	ccf	$x_1 = a_1 \cdot (id \triangle D (x_1 \triangle x_2) \cdot c) : A_1 \leftarrow C$ $x_2 = a_2 \cdot (id \triangle D (x_1 \triangle x_2) \cdot c) : A_2 \leftarrow C$	$a_1: C \times D (A_1 \times A_2) \rightarrow A_1$ $a_2: C \times D (A_1 \times A_2) \rightarrow A_2$
accumulator	$-\times P\dashv (-)^P$	ccf	$x = a \cdot (outl \triangle ((D (\Lambda x) \cdot c) \times P)) : A \leftarrow C \times P$	$a: C \times D(A^P) \times P \rightarrow A$
course-of-values (§5.6)	$U_D \dashv Cofree_D$	ccf	$x = a \cdot (id \triangle D (D_{\infty} x \cdot [c]) \cdot c) : A \leftarrow C$	$a: C \times D(D_{\infty} A) \to A$
finite memo-table (§5.6)	$U_*\dashvCofree_*$	ccf	$x = a \cdot (id \triangle D (D_* x \cdot \llbracket c \rrbracket_*) \cdot c) \ : \ A \leftarrow C$	$a: C \times D(D_* A) \to A$

Table 1. Different types of para-hylos building on the canonical control functor (ccf); the coalgebra is $c: C \to D$ C in each case.

...............

.. 1:.... . 4: . . .