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Concurrency is hard!
• Deadlocks
• Protocol violations
• Resource contention
• etc.

Our work:
• Safety and liveness of message-passing

concurrent programs
• A novel Multiparty Session Type system
• Full Agda mechanisation
• An implementation in Rascal
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The Problem

P := send Q; ...
Q := receive P; receive S; send R; send S; ...
R := receive Q; send S; ...
S := receive R; receive Q; send Q; ...
system := P | Q | R | S

Question: Is system safe?
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The Problem

P := send Q; ...
Q := receive P; receive S; send R; send S; ...
R := receive Q; send S; ...
S := receive R; receive Q; send Q; ...
system := P | Q | R | S

Question: Is system safe? NO!
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Multiparty Session Types (in a nutshell)

W1 W2 W3
processes

Gglobal type
G = 
    W1 → W2 : Int.
    W2 → W3 : Bool 

L1 L2 L3
local types

pr
oj

ec
tio

n

L1 = W2 ! Int
L2 = W1 ? Int. 
     W3 ! Bool
L3 = W2 ? Bool ty

p
e
ch

e
ck
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    W1 → W2 : Int.
    W2 → W3 : Bool 

L1 L2 L3
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oj
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L1 = W2 ! Int
L2 = W1 ? Int. 
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well-typed IMPLIES protocol compliance AND deadlock-freedom   
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MPST in more detail

Roles p; q; : : :

Sorts S := bool | nat | : : : Basic data types.

Global Types G := p → q : {‘i (Si ):Gi}i∈I Communication.
| —X:G Recursion.
| X Variable.
| ? End of protocol.

Local Types L := p!{‘i (Si ):Li}i∈I Send.
| q?{‘i (Si ):Li}i∈I Receive.
| —X:L Recursion.
| X Recursion variable.
| ? End of protocol.
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Projection

p → q : {‘i (Si ):Gi}i∈I — r =

8<:
q!{‘i (Si ):Gi — r}i∈I (r = p ∧ ∧ p ̸= q)
p?{‘i (Si ):Gi — r}i∈I ( ∧ r = q ∧ p ̸= q)
⊓i∈I(Gi — r) (r ̸= p ∧ r ̸= q ∧ p ̸= q)

—X:G — r =
ȷ
—X:G — r (r ∈ G)
? (r ̸∈ G) X — r = X ? — r = ?

p?{‘i (Si ):Li}i∈I ⊓ p?{‘j(Sj):L′j}j∈J
= p?{‘i (Si ):Li}i∈I\J ∪ {‘j(Sj):L′j}j∈J\I ∪ {‘i (Si ):Li ⊓ L′i}i∈I∩J

p!{‘i (Si ):Li}i∈I ⊓ p!{‘i (Si ):L′i}i∈I = p!{‘i (Si ):Li⊓L′i}i∈I

—X:L ⊓ —X:L′ = —X:(L ⊓ L′) L ⊓ L = L
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It gets complicated very quickly!
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Projection (Example)

Consider the following protocol

—X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff

Projecting r
—X:(q?REQ(bool):X) ⊓ (q?END():?)

= —X:q?

ȷ
REQ(bool):X
END() :done

ff
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Processes and Typing

Process P := p ! ‘⟨e⟩:P Send a message.
|
X
i∈I

p?‘i (xi ):Pi Receive a message.

| if e thenP elseP ′ Conditional process.
| recX : P Recursive process.
| X Recursion variable.
| done Inactive process.
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Process Typing (simplified)

Once we have local types, process typing is simple:

T-SEND
Γ ⊢ P : Li Γ ⊢ e : Si i ∈ I
Γ ⊢ q ! ‘i ⟨e⟩:P : (p!{‘i (Si ):Li}i∈I)

T-RECV
∀(i ∈ I); [Γ; xi : Si ⊢ Pi : Li ] z

Γ ⊢
X
i∈I

p?‘i (xi ):Pi : (p?{‘i (Si ):Li}i∈I)
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Local types and processes are so similar that
some developments omit them, and

projection produces directly processes.
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projection produces directly processes.Deconfined Global Types for Asynchronous
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Francesco Dagnino1, Paola Giannini2, and Mariangiola Dezani-Ciancaglini3

1 DIBRIS, Università di Genova, Italy
2 DiSIT, Università del Piemonte Orientale, Alessandria, Italy

3 Dipartimento di Informatica, Università di Torino, Italy
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Problems with Classical Formulation

1. Too syntactic:
• Processes and local types must align
• Too restrictive, rules out correct processes
• . . .

2. Unnecessarily complex:
• Hard to implement/mechanise, e.g.:

– Use of runtime coinductive global types: Our PLDI 2021 paper, Jacobs et al.
(2022).

– Graph-based reasoning and decision procedure for the equality of recursive types:
Tirore et al. (2023)

• Hard to extend
3. Imprecise (coinduction, safety)
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Example of Imprecision in Classical MPST

Equirecursion: “We identify —X:G with [—X:G=X]G”

Common statement in proofs about MPST, but...
1. The rules specify how to deal with variables X
2. The rules specify when and how to unfold —X:G

Moreover: Equirecursion alone distinguishes too many protocols that “are the same”:

p → q : p′ → q′ : G ̸= p′ → q′ : p → q : G

Mechanising the classical theory of MPST is notoriously hard, in part due to this.
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Another Example of Imprecision in Classical MPST

This source of imprecision did cause flawed proofs in the literature.

Preservation theorem:

’(L1; : : : ; Ln) ∧ (P1 | : : : | Pn
¸−→ P ′

1 | : : : | P ′
n)

∧( ⊢ P1 : L1 ∧ : : : ∧ ⊢ Pn : Ln)
=⇒ ∃L1′ · · ·Ln′ ∧ (L1 | : : : | Ln

¸−→ L′1 | : : : | L′n)
∧( ⊢ P ′

1 : L1
′ ∧ : : : ∧ ⊢ P ′

n : Ln
′)

Implicit assumption:
(∀i ; Li = G — ri) =⇒ ’(L1; : : : ; Ln)
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Another Example of Imprecision in Classical MPST

This source of imprecision did cause flawed proofs in the literature.

Preservation theorem:
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¸−→ L′1 | : : : | L′n)
∧( ⊢ P ′

1 : L1
′ ∧ : : : ∧ ⊢ P ′

n : Ln
′)

Implicit assumption:
(∀i ; Li = G — ri) =⇒ ’(L1; : : : ; Ln)

This assumption is wrong (Scalas & Yoshida, POPL’19)!
• Trivially holds for the basic case.
• Breaks as soon as you extend the theory slightly (e.g. full

merge).
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A Few Attempts at Simplifying the Theory

Deconfined Global Types for Asynchronous
Sessions

Francesco Dagnino1, Paola Giannini2, and Mariangiola Dezani-Ciancaglini3

1 DIBRIS, Università di Genova, Italy
2 DiSIT, Università del Piemonte Orientale, Alessandria, Italy

3 Dipartimento di Informatica, Università di Torino, Italy
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Less is More Revisited
Association with Global Multiparty Session Types

Nobuko Yoshida(B) and Ping Hou

University of Oxford, Oxford, UK
{nobuko.yoshida,ping.hou}@cs.ox.ac.uk

Abstract. Multiparty session types (MPST) [12] provide a type disci-
pline where a programmer or architect specifies a whole view of com-
munications as a global protocol, and each distributed program is locally
type-checked against its end-point projection. After 10 years from the
birth of MPST, Scalas and Yoshida [18] discovered that the proofs of
type safety in the literature which use the end-point projection with
mergeability are flawed. After this paper, researchers wrongly believed
that the end-point projection (with mergeability) was unsound. We cor-
rect this misunderstanding, proposing a new general proof technique for
type soundness of multiparty session π-calculus, which uses an associa-
tion relation between a global type and its end-point projection.

1 Introduction

Today many computer science technologies are centred on data science and
machine learning, which fall within the field of technology used to leverage data
for creating and innovating products, services, and infrastructural systems in
society. In 1996, C. B. Jones, together with J.R. Gurd, predicted this era of
data. In their article, the Global-yet-Personal Information System (GyP

∫
IS), in

Computing Tomorrow: future research directions in computer science edited by
Wand and Milner [9], they argued that extracting meaning from data, and under-
standing and building methods that utilise data to inform predictions will be the
central concerns in future computing, proposing the system called GyP

∫
IS. The

thesis of GyP
∫
IS is that data should be globally consistent, open for everybody,

and yet personalised (structured with respect to an individual need). They pre-
dicted that future systems would go beyond the scope of the known programming
paradigm, and argued for the importance of describing and formally specifying
interactive behaviours.

Multiparty session types (MPST) [12,13] represent a type discipline which
attempts to take a step to meet the GyP

∫
IS challenge, by offering a program-

ming framework to guarantee a global consistency among interactive agents or
processes in the open system [10,19]. It facilitates the description, specification

Work supported by: EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1,
EP/X015955/1, NCSS/EPSRC VeTSS, and Horizon EU TaRDIS 101093006.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

A. Cavalcanti and J. Baxter (Eds.): The Practice of Formal Methods, LNCS 14781, pp. 268–291, 2024.

https://doi.org/10.1007/978-3-031-66673-5_14
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Our Approach: Synthetic Typing

Synthetic Behavioural Typing: Sound, Regular
Multiparty Sessions via Implicit Local Types
Sung-Shik Jongmans #

Department of Computer Science, Open University, Heerlen, The Netherlands
Centrum Wiskunde & Informatica (CWI), NWO-I, Amsterdam, The Netherlands

Francisco Ferreira #

Department of Computer Science, Royal Holloway, University of London, UK
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Our Contributions:
• “Free” typing from being tied up to the syntax of local types.
• An MPST system that avoids projection/merging/etc.
• Type-checking against arbitrary (well-formed) LTSs.
• Well-formedness/deadlock-freedom is decided by typeability, not by

projectability.
• Mechanisation in Agda.
• Implementation in Rascal.
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(Slightly Simplified) Core SyntheticTyping Rules

T-SEND
Γ ⊢ P : G′ — p G

p→q:‘(S)−−−−−→ G′ Γ ⊢ e : S
Γ ⊢ q ! ‘⟨e⟩:P : G — p

T-RECV
(G allows p → q : ‘j , for some j) ∀ i G′ (G

q→p:‘i (Si )−−−−−−→ G′);
ˆ
Γ; xi : Si ⊢ Pi : G′ — p

˜
Γ ⊢

X
i∈I

q?‘i (xi ):Pi : G — p

T-SKIP

(It is safe for p to wait in G) ∀(G {p}−−→ ∗G′ {p}−−→);
ˆ
Γ ⊢ P : G′ — p

˜
Γ ⊢ P : G — p
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Synthetic Behavioural Typing

Key idea: The syntax of G is irrelevant!

G is just the state of a labelled transition system (LTS)!
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Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.

But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

Well-behavedness:
1. Sender determinacy: If a state allows multiple transitions, these cannot have the same

receiver but different senders.
2. Determinism: A state can have at most one transition with the same action label.
3. Conditional commutativity: In any state, if a later independent action has an earlier

enabled branch, it can be commuted earlier.
4. Diamond property.
5. "Stepback" property? (not in the paper – likely an artifact of our mechanisation only used

to prove one minor case in our mechanisation). “Bisimilarity is preserved when moving to
past states” (?)
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Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.

But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

Well-behavedness:
1. Sender determinacy: If a state allows multiple transitions, these cannot have the same

receiver but different senders.
2. Determinism: A state can have at most one transition with the same action label.
3. Conditional commutativity: In any state, if a later independent action has an earlier

enabled branch, it can be commuted earlier.
4. Diamond property.
5. "Stepback" property? (not in the paper – likely an artifact of our mechanisation only used

to prove one minor case in our mechanisation). “Bisimilarity is preserved when moving to
past states” (?)

Every syntactic global type in the classical theory of
MPST is well-behaved!
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Example

G = —X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff
We are going to typecheck a process implementing role r...
but first, let’s get rid of the syntax for G!
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Example: Semantic View of Global Types

—X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff

1start 2

4 5

p→q : REQ(nat)
p→q : END()

q→ r : REQ(bool)

q→ r : END()
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Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;
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q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;
Our goal is to show that ⊢ P : 1 — r
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Example: Process & Typing
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4 5
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q→ r : END()

P =
P8><>:q?REQ(x):print(x): recX :
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q?REQ(x):process(x): X
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ff
q?END(_):done

9>=>;
· ⊢ recX : . . . : 1 — r
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Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;
X : 1 ⊢ X : 1 — r
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Properties of Synthetic MPST

Some key lemmas:

• If G ∼ G′ and Γ ⊢ P : G — r then Γ ⊢ P : G′ — r

• If G ¸−→ G′, with r ̸∈ ¸, and Γ ⊢ P : G — r, then Γ ⊢ P : G′ — r

These are needed for proving safety and liveness theorems (i.e. preservation andf progress).
Suppose that M is a collection of processes, and G is well-behaved:

• If ⊢ M : G and M ¸−→ M′, then there exists G′ such that G ¸−→ G′ and ⊢ M′ : G′

• If ⊢ M : G and G is not ended, then there exists M′ and ¸ such that M ¸−→ M′:

Finally, we proved that for all global type G, the LTS of G is well-behaved.
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Contributions

• Special case: MPST system with global types (without projection, merging, local types)
• Special case: Expressive enough to capture all benchmarks of (Scalas & Yoshida 2019)

• General case: MPST system with well-behaved LTSs
• Type soundness – much simpler than the literature (roughly 550 LOC of Agda!)

• Artifact: Full mechanisation in Agda.
• Artifact: Implementation of the special case in Rascal (Thanks, Sung!)
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• General case: MPST system with well-behaved LTSs
• Type soundness – much simpler than the literature (roughly 550 LOC of Agda!)

• Artifact: Full mechanisation in Agda.
• Artifact: Implementation of the special case in Rascal (Thanks, Sung!)

THANKS!
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