A Synthetic Reconstruction of Multiparty
Session Types

Sung-Shik Jongmans
s.s.t.q.jongmans@rug.nl
A
University of ’{)’ﬁ /
rijksuniversiteit

ant gty ROYAL
) HOLLOWAY
I(_ Q85| UNIVERSITY o
F LONDON groningen

David Castro-Pérez Francisco Ferreira

francisco.ferreiraruiz@rhul.ac.uk

d.castro-perez@kent.ac.uk

PLAS Seminar, 19-01-2026

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

mailto:d.castro-perez@kent.ac.uk
mailto:francisco.ferreiraruiz@rhul.ac.uk
mailto:s.s.t.q.jongmans@rug.nl

Concurrency is hard!

Deadlocks

Protocol violations

= Resource contention

= etc.

PLAS Seminar, 19-01-2026

David Castro-Pérez

Our work:

= Safety and liveness of message-passing
concurrent programs

= A novel Multiparty Session Type system

Full Agda mechanisation

= An implementation in Rascal

A Synthetic Reconstruction of Multiparty Session Types

N

N
N

The Problem

:= send Q;
receive P; receive S; send R; send S;
:= receive (; send S;

n © o v
I

:= receive R; receive (; send Q;
system :=P | Q | R | S

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

The Problem

:= send Q;
receive P; receive S; send R; send S;
:= receive (; send S;

n © o v
I

:= receive R; receive (; send Q;
system :=P | Q | R | S

Question: Is system safe?

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

The Problem

:= send Q;
:= receive P; receive S; send R; send S;
:= receive (; send S;

0 © o ‘U
I

:= receive R; receive (; send Q;
system :=P | Q | R | S

Question: Is system safe? NO!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

Multiparty Session Types (in a nutshell)

G =
global type W; » W, : Int.
W, » W3 : Bool
(4

local types
7 T T L, = W, ! Int
%J : Lz = Wl ? Int.
S W; ! Bool
2 g L; = W, ? Bool
-
processes

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

22

Multiparty Session Types (in

global type

E
[

local types
~ T
[S
Q
£ :
O
Q
>
= 4§
processes @
PLAS Seminar, 19-01-2026 David Castro-Pérez

a nutshell)

0 L, =W, ! Int
LZ = Wl ? Int.

W; ! Bool

L; = W, ? Bool

A Synthetic Reconstruction of Multiparty Session Types

22

MPST in more detail

PLAS Seminar, 19-01-2026

Roles
Sorts

Global Types G

Local Types L

David Castro-Pérez

05 @l 000

P—q
uX.G
X
%)

p!{4i(
q?7{4i(
uX.L
X
%]

| ... Basic data types.

:{4i(5/).Gi}ier Communication.
Recursion.
Variable.
End of protocol.

).L,’},’e_[Send.
).Litier Receive.
Recursion.

Recursion variable.

End of protocol.

A Synthetic Reconstruction of Multiparty Session Types

Projection

q'{4i(51).Gi I rtier (r=pA Ap#q)
p—q:{4i(5).Gitier Tr=1< p?{i(5)).Gi [r}ier (Ar=qAp#q)

Mier(Gi I'r) (r#pAr#daAp#aq)
[wXGlr (reG) _ _
uX.G[r—{g (r ¢ G) X[r=X FlIr=9

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

22

Projection

qQ'{€i(5/).Gi I rtier (r=pA Ap#q)
p—q:{4i(S).Gitier [r= 4 pHLi(S).Gi[r}ier (Ar=qAp#q)
Mier(Gi [r) (r#£pAr#qAp#aq)

MX.G[r:{gX'G“ E:;gg Xlr=X olr=o

p?{Li(S1).LiYier M p?{4i(S))-LiYjes
= pH&i(S))-Litienns U{4(5))-Li}iens U{Li(S)-Li M LiYierny

pHLi(Si).Litier M pHLi(Si).Litier = pH{&i(Si).LiNL }ier

pX.LOpX.L' =pX.(LOL) LAL=1L

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 6 22

Projection

qi{i(5/)-Gi T rtier (r=pA Ap#q)
p—q:{4i(5).Gitier Tr=1 pHLi(5).Gilrtier (Ar=qAp#q)

Mier(Gi I'r) (r#pAr#qAp#aq)
It gets complicated very quickly!
H//\.U " — 1 @ (rgG) 7\ | I — 7\ xv | 1 — v

p?{Li(S1).LiYier M p?{4i(S))-LiYjes
= pH&i(S))-Litienns U{4(5))-Li}iens U{Li(S)-Li M LiYierny

pH{Li(S)-Litier MpHLi(Si).LiYier = pH{i(S).LiNL }ier

pX.LOpX.L' =pX.(LOL) LAL=1L

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

Projection (Example)

Consider the following protocol

PLAS Seminar, 19-01-2026

,uX.p—>q:{

David Castro-Pérez

REQ(
END()

).qa = r: REQ().X }
.q — r: END().done

A Synthetic Reconstruction of Multiparty Session Types

22

Projection (Example)

Consider the following protocol

Projecting r

PLAS Seminar, 19-01-2026

| REQ(
uX.p—q: { END()

uX.(q?REQ(

David Castro-Pérez

).qa = r: REQ().X }
.q — r: END().done

).X) 11 (q?END().2)

A Synthetic Reconstruction of Multiparty Session Types

22

Projection (Example)

Consider the following protocol

Projecting r

PLAS Seminar, 19-01-2026

| REQ(
uX.p—q: { END()

uX.(q?REQ(

David Castro-Pérez

).qa = r: REQ().X }
.q — r: END().done

).X) 1 (q?END().2)

REQ().X }
END() .done

A Synthetic Reconstruction of Multiparty Session Types

22

Processes and Typing

Process P := p!l{(e).P Send a message.
| Z p?Li(x).P; Receive a message.
il
| if ethenPelseP’ Conditional process.
| recX.P Recursive process.
| X Recursion variable.
| done Inactive process.
PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

Process Typing (simplified)

Once we have local types, process typing is simple:

T-SEND
[=P:L; -e: i€l

T-RECV
Viel)[lxi:SiFP:Ljz

FEqléi(e).P: (p{Li(S5)-Litier)

PLAS Seminar, 19-01-2026 David Castro-Pérez

FE> p2i(x)-Pi: (p2Li(S)-Litier)

i€l

A Synthetic Reconstruction of Multiparty Session Types

Process Typing (simplified)

Once ...

Local types and processes are so similar that
some developments omit them, and
projection produces directly processes.

T-SEND T-RECV
r-P:L; Thre: iel VG eIl x:SikP:Ljz
M=qleie).P: (pHLi(S)-Litier) MY p2i(xi)-Pr: (p?{4i(S) Litier)
i€l
PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

Process Typing (simplified)

Lc

PLAS Seminar, 19-01-2026

Deconfined Global Types for Asynchronous

Sessions

Francesco Dagnino', Paola Giannini?, and Mariangiola Dezani-Ciancaglini®

! DIBRIS, Universita di Genova, Italy

2 DiSIT, Universita del Piemonte Orientale, Alessandria, Ttaly
3 Dipartimento di Informatica, Universita di Torino, Italy

David Castro-Pérez

A Synthetic Reconstruction of Multiparty Session Types

riel)

22

Problems with Classical Formulation

1. Too syntactic:

= Processes and local types must align
= Too restrictive, rules out correct processes

2. Unnecessarily complex:
= Hard to implement/mechanise, e.g.:

— Use of runtime coinductive global types: Our PLDI 2021 paper, Jacobs et al.
(2022).

— Graph-based reasoning and decision procedure for the equality of recursive types:
Tirore et al. (2023)

= Hard to extend

3. Imprecise (coinduction, safety)

N
N

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 10

Example of Imprecision in Classical MPST

’Equirecursion: “We identify uX.G with [uX.G/X]G" ‘

Common statement in proofs about MPST, but...
1. The rules specify how to deal with variables X

2. The rules specify when and how to unfold pX.G

Moreover: Equirecursion alone distinguishes too many protocols that “are the same”:

p—=q:pP—=qd:6G#£p =qd:p—=q:G

Mechanising the classical theory of MPST is notoriously hard, in part due to this.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 11 22

Another Example of Imprecision in Classical MPST

This source of imprecision did cause flawed proofs in the literature.

Preservation theorem:

oLy, ..., L)A(PL| ... | P S PL...| P . Ly L ALy | L S L L)
ANFP:LiAN...ANFEPy: L) ANEP LN ANEPLY)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 12 22

Another Example of Imprecision in Classical MPST

This source of imprecision did cause flawed proofs in the literature.

Preservation theorem:

oLy, ..., L)A(PL| ... | P S PL...| P . Ly L ALy | L S L L)
ANFP:LiAN...ANFEPy: L) ANEP LN ANEPLY)

Implicit assumption:

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 12 22

Another Example of Imprecision in Classical MPST

This source of imprecision did cause flawed proofs in the literature.

Preservation theorem:
. o . o
o(L1, ... This assumption is wrong (Scalas & Yoshida, POPL'19)! WS L] L)
NG = Trivially holds for the basic case. [Ln')
= Breaks as soon as you extend the theory slightly (e.g. full
merge).

Implicit assumption:

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 12 22

A Few Attempts at Simplifying the Theory

Deconfined Global Types for Asynchronous
Sessions

Francesco Dagnino', Paola Giannini?, and Mariangiola Dezani-Ciancaglini®
b b

! DIBRIS, Universita di Genova, Italy
2 DiSIT, Universita del Piemonte Orientale, Alessandria, Italy
3 Dipartimento di Informatica, Universita di Torino, Italy

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 13

22

A Few Attempts at Simplifying the Theory

Less Is More: Multiparty Session Types Revisited

ALCESTE SCALAS, Imperial College London, UK
NOBUKO YOSHIDA, Imperial College London, UK

2 DiSIT, Universita del Piemonte Orientale, Alessandria, Italy
3 Dipartimento di Informatica, Universita di Torino, Italy

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 13

22

A Few Attempts at Simplifying the Theory

®

Check for
Updates.

Less is More Revisited
Association with Global Multiparty Session Types

Nobuko Yoshidal)® and Ping Hou

University of Oxford, Oxford, UK
{nobuko.yoshida,ping.hou}@cs.ox.ac.uk

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 13

22

Our Approach: Synthetic Typing

Synthetic Behavioural Typing: Sound, Regular
Multiparty Sessions via Implicit Local Types

Sung-Shik Jongmans &
Department of Computer Science, Open University, Heerlen, The Netherlands
Centrum Wiskunde & Informatica (CWI), NWO-I, Amsterdam, The Netherlands

Francisco Ferreira &
Department of Computer Science, Royal Holloway, University of London, UK

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

Our Approach: Synthetic Typing

Sy..a-l,-...o-:n DAalhaiiimcival Tomivias Caciend DanilAaa

M

Sur
Depa
Cent

Fra
Depa

PLAS Seminar, 19-01-2026

QOur Contributions:

“Free"” typing from being tied up to the syntax of local types.
An MPST system that avoids projection/merging/etc.
Type-checking against arbitrary (well-formed) LTSs.

Well-formedness/deadlock-freedom is decided by typeability, not by
projectability.
Mechanisation in Agda.

Implementation in Rascal.

David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 14

(Slightly Simplified) Core SyntheticTyping Rules

T-SEND
rep:c'tp 2% ¢ rre:s
FEqléle).P:Glp

T-RECV
G allows p — q : £;, for some j ViG (G RHE, o M x:SiFP:G' |p
j
M Z q2i(x;).P.: G [p
icl
T-SKIP -
(It is safe for p to wait in G) W(G 25 x" Bhy [r - PG/ 1]

Fr=P:GJp

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 15

22

Synthetic Behavioural Typing

Key idea: The syntax of G is irrelevant!

PLAS Seminar, 19-01-2026 David Castro-Pérez

A Synthetic Reconstruction of Multiparty Session Types

16

22

Synthetic Behavioural Typing

Key idea: The syntax of G is irrelevant!

G is just the state of a labelled transition system (LTS)!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

16

Well-behavedness

Our type system is parameterised by an LTS, where labels must specify send/receive interactions.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 17

Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.

But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 17

Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.
But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

Well-behavedness:

1. Sender determinacy: If a state allows multiple transitions, these cannot have the same
receiver but different senders.

2. Determinism: A state can have at most one transition with the same action label.

3. Conditional commutativity: In any state, if a later independent action has an earlier
enabled branch, it can be commuted earlier.

4. Diamond property.

5. "Stepback" property? (not in the paper — likely an artifact of our mechanisation only used
to prove one minor case in our mechanisation). “Bisimilarity is preserved when moving to
past states” (?)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 17

N
N

Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.
But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

Well-behavedness:
1. Sender determinacy: If a state allows multiple transitions, these cannot have the same
receiver but different senders.
2. Dete Every syntactic global type in the classical theory of
3. Con MPST is well-behaved!

enab.__
4. Diamond property.

5. "Stepback" property? (not in the paper — likely an artifact of our mechanisation only used
to prove one minor case in our mechanisation). “Bisimilarity is preserved when moving to
past states” (?)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 17 22

Example

quX.p—)q:{

REQ(nat).q — r: REQ().X }
END() .q — r:END().done

We are going to typecheck a process implementing role r...

PLAS Seminar, 19-01-2026

David Castro-Pérez

A Synthetic Reconstruction of Multiparty Session Types

18

22

Example

Gsz.p—)q:{

REQ(nat).q — r: REQ().X }
END() .q — r:END().done

We are going to typecheck a process implementing role r...
but first, let’s get rid of the syntax for G!

PLAS Seminar, 19-01-2026

David Castro-Pérez

A Synthetic Reconstruction of Multiparty Session Types

Example:

PLAS Seminar, 19-01-2026

Semantic View of Global Types

. [REQ(nat).q — r: REQ(bool).X
pX.p—q: { END() 2 : r: END().done }

q—r: REQ()

start

)

p—q:END()| P9 REQ

q—r: END() @

David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 19

22

Example: Process & Typing

Py q?REQ(x).print(x). rec X . > {
q?END(_).done

PLAS Seminar, 19-01-2026 David Castro-Pérez

q?REQ(x).process(x). X
q?END(_).done

A Synthetic Reconstruction of Multiparty Session Types

20

22

Example: Process & Typing

P=Y q?REQ(x).print(x). rec X . 3_ {

q?END(_).done

PLAS Seminar, 19-01-2026 David Castro-Pérez

q?REQ(x).process(x). X
q?END(_).done

A Synthetic Reconstruction of Multiparty Session Types

20

22

Example: Process & Typing

P—y q?REQ(x).print(x). rec X . >_ {
q?END(_).done

Our goal is to show that F P : 1 [r

PLAS Seminar, 19-01-2026 David Castro-Pérez

q?REQ(x).process(x). X
q?END(_).done

A Synthetic Reconstruction of Multiparty Session Types

20

22

Example: Process & Typing

q?REQ(x).print(x). rec X . >_ {
q?END(_).done

P-y

PLAS Seminar, 19-01-2026 David Castro-Pérez

q?REQ(x).process(x). X
q?END(_).done

A Synthetic Reconstruction of Multiparty Session Types

q—r: REQ(bool)

20

22

Example: Process & Typing

P-¥

q?REQ(x).print(x). rec X . > {
q?END(_).done

PLAS Seminar, 19-01-2026 David Castro-Pérez

q?REQ(x).process(x). X
q?END(_).done

|

p—q: END()

A Synthetic Reconstruction of Multiparty Session Types

20

22

Example: Process & Typing

Py q?REQ(x).print(x). rec X . > {
q?END(_). done

PLAS Seminar, 19-01-2026 David Castro-Pérez

q?REQ(x).process(x). X
q?END(_).done

A Synthetic Reconstruction of Multiparty Session Types

20

22

Example: Process & Typing

P—y q?REQ(x).print(x). rec X . >_ {

q?END(_).done

PLAS Seminar, 19-01-2026 David Castro-Pérez

q?REQ(x).process(x). X
q?END(_).done

A Synthetic Reconstruction of Multiparty Session Types

20

22

Example: Process & Typing

Py q?REQ(x).print(x). rec X .Y {
q?END(_).done

PLAS Seminar, 19-01-2026 David Castro-Pérez

q?REQ(x).process(x). X
q?END(_).done

A Synthetic Reconstruction of Multiparty Session Types

20

22

Example: Process & Typing

. 7RE . . X
Py q?REQ(x).print(x). rec X.>_ {g?ENIC:Q)Ei))ESIfZSS(X) }
q?END(_).done

FrecX. ... :1[r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20

Example: Process & Typing

. 7RE . . X
p=y q?REQ(x).print(x). rec X . > {g?ENIC:Q)Ei))ESIfZSS(X) }
q?END(_).done

X:1F ... ‘g |

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20

q—r: REQ(bool)

Example: Process & Typing % C 0
p—q : END() p—q: REQ(nat)

q—r: END()

_ q?REQ(x).process(x). X
p=y q?REQ(x).print(x). rec X . > { 47END(_).done }

q?END(_).done

X:1F ... ‘pmmmlr

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20

Example: Process & Typing

q?REQ(x).process(x). X }

Py q?REQ(x).print(x). rec X . > {q?END(_).done

q?END(_).done

X:1F ... ‘gl r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20

Example: Process & Typing

. q?REQ(x).process(x). X
Py q?REQ(x).print(x). rec X . > {q?END(_).done }
q?END(_).done

X:1F ... g |r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20

Example: Process & Typing

P—y q?REQ(x).print(x). rec X . Y_ {EEEES((?)ZFS:ZSS(X) X }

q?END(_).done

X:1F X [[r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20

Properties of Synthetic MPST

Some key lemmas:
olf G ~G andTFP:G |rthenTFP:G |r

olngG',withrga,andrl—P:G[r,thenl'l—P:G’[r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

21

22

Properties of Synthetic MPST

Some key lemmas:

elf G ~ G andTFP:GrthenTFP:G |r

olf G5 G withrda,andTFP:G|r, thenTFP:G |r

These are needed for proving safety and liveness theorems (i.e. preservation andf progress).
Suppose that M is a collection of processes, and G is well-behaved:

olf FM:G and M 2 M, then there exists G’ such that G = G’ and - M': G’

olf F M :G and G is not ended, then there exists M’ and a such that M = M'.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 21 22

Properties of Synthetic MPST

Some key lemmas:

elf G ~ G andTFP:GrthenTFP:G |r

olf G5 G withrda,andTFP:G|r, thenTFP:G |r
These are needed for proving safety and liveness theorems (i.e. preservation andf progress).

Suppose that M is a collection of processes, and G is well-behaved:

olf FM:G and M 5 M, then there exists G’ such that G = G’ and - M': G’

olf F M :G and G is not ended, then there exists M’ and a such that M = M'.

Finally, we proved that for all global type G, the LTS of G is well-behaved.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 21 22

Contributions

= Special case: MPST system with global types (without projection, merging, local types)

= Special case: Expressive enough to capture all benchmarks of (Scalas & Yoshida 2019)

= General case: MPST system with well-behaved LTSs
= Type soundness — much simpler than the literature (roughly 550 LOC of Agda!)

= Artifact: Full mechanisation in Agda.
= Artifact: Implementation of the special case in Rascal (Thanks, Sung!)

N
N
N
N

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

Contributions

THANKS!

= Special case: MPST system with global types (without projection, merging, local types)

= Special case: Expressive enough to capture all benchmarks of (Scalas & Yoshida 2019)

= General case: MPST system with well-behaved LTSs
= Type soundness — much simpler than the literature (roughly 550 LOC of Agda!)

= Artifact: Full mechanisation in Agda.
= Artifact: Implementation of the special case in Rascal (Thanks, Sung!)

N
N
N
N

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

