
A Synthetic Reconstruction of Multiparty
Session Types

David Castro-Pérez Francisco Ferreira Sung-Shik Jongmans
d.castro-perez@kent.ac.uk francisco.ferreiraruiz@rhul.ac.uk s.s.t.q.jongmans@rug.nl

PLAS Seminar, 19-01-2026

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 1 22

mailto:d.castro-perez@kent.ac.uk
mailto:francisco.ferreiraruiz@rhul.ac.uk
mailto:s.s.t.q.jongmans@rug.nl

Concurrency is hard!
• Deadlocks
• Protocol violations
• Resource contention
• etc.

Our work:
• Safety and liveness of message-passing

concurrent programs
• A novel Multiparty Session Type system
• Full Agda mechanisation
• An implementation in Rascal

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 2 22

The Problem

P := send Q; ...
Q := receive P; receive S; send R; send S; ...
R := receive Q; send S; ...
S := receive R; receive Q; send Q; ...
system := P | Q | R | S

Question: Is system safe?

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 3 22

The Problem

P := send Q; ...
Q := receive P; receive S; send R; send S; ...
R := receive Q; send S; ...
S := receive R; receive Q; send Q; ...
system := P | Q | R | S

Question: Is system safe?

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 3 22

The Problem

P := send Q; ...
Q := receive P; receive S; send R; send S; ...
R := receive Q; send S; ...
S := receive R; receive Q; send Q; ...
system := P | Q | R | S

Question: Is system safe? NO!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 3 22

Multiparty Session Types (in a nutshell)

W1 W2 W3
processes

Gglobal type
G =
 W1 → W2 : Int.
 W2 → W3 : Bool

L1 L2 L3
local types

pr
oj

ec
tio

n

L1 = W2 ! Int
L2 = W1 ? Int.
 W3 ! Bool
L3 = W2 ? Bool ty

p
e
ch

e
ck

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 4 22

Multiparty Session Types (in a nutshell)

W1 W2 W3
processes

Gglobal type
G =
 W1 → W2 : Int.
 W2 → W3 : Bool

L1 L2 L3
local types

pr
oj

ec
tio

n

L1 = W2 ! Int
L2 = W1 ? Int.
 W3 ! Bool
L3 = W2 ? Bool ty

p
e
ch

e
ck

well-typed IMPLIES protocol compliance AND deadlock-freedom

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 4 22

MPST in more detail

Roles p; q; : : :

Sorts S := bool | nat | : : : Basic data types.

Global Types G := p → q : {‘i (Si):Gi}i∈I Communication.
| —X:G Recursion.
| X Variable.
| ? End of protocol.

Local Types L := p!{‘i (Si):Li}i∈I Send.
| q?{‘i (Si):Li}i∈I Receive.
| —X:L Recursion.
| X Recursion variable.
| ? End of protocol.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 5 22

Projection

p → q : {‘i (Si):Gi}i∈I — r =

8<:
q!{‘i (Si):Gi — r}i∈I (r = p ∧ ∧ p ̸= q)
p?{‘i (Si):Gi — r}i∈I (∧ r = q ∧ p ̸= q)
⊓i∈I(Gi — r) (r ̸= p ∧ r ̸= q ∧ p ̸= q)

—X:G — r =
ȷ
—X:G — r (r ∈ G)
? (r ̸∈ G) X — r = X ? — r = ?

p?{‘i (Si):Li}i∈I ⊓ p?{‘j(Sj):L′j}j∈J
= p?{‘i (Si):Li}i∈I\J ∪ {‘j(Sj):L′j}j∈J\I ∪ {‘i (Si):Li ⊓ L′i}i∈I∩J

p!{‘i (Si):Li}i∈I ⊓ p!{‘i (Si):L′i}i∈I = p!{‘i (Si):Li⊓L′i}i∈I

—X:L ⊓ —X:L′ = —X:(L ⊓ L′) L ⊓ L = L

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 6 22

Projection

p → q : {‘i (Si):Gi}i∈I — r =

8<:
q!{‘i (Si):Gi — r}i∈I (r = p ∧ ∧ p ̸= q)
p?{‘i (Si):Gi — r}i∈I (∧ r = q ∧ p ̸= q)
⊓i∈I(Gi — r) (r ̸= p ∧ r ̸= q ∧ p ̸= q)

—X:G — r =
ȷ
—X:G — r (r ∈ G)
? (r ̸∈ G) X — r = X ? — r = ?

p?{‘i (Si):Li}i∈I ⊓ p?{‘j(Sj):L′j}j∈J
= p?{‘i (Si):Li}i∈I\J ∪ {‘j(Sj):L′j}j∈J\I ∪ {‘i (Si):Li ⊓ L′i}i∈I∩J

p!{‘i (Si):Li}i∈I ⊓ p!{‘i (Si):L′i}i∈I = p!{‘i (Si):Li⊓L′i}i∈I

—X:L ⊓ —X:L′ = —X:(L ⊓ L′) L ⊓ L = L

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 6 22

Projection

p → q : {‘i (Si):Gi}i∈I — r =

8<:
q!{‘i (Si):Gi — r}i∈I (r = p ∧ ∧ p ̸= q)
p?{‘i (Si):Gi — r}i∈I (∧ r = q ∧ p ̸= q)
⊓i∈I(Gi — r) (r ̸= p ∧ r ̸= q ∧ p ̸= q)

—X:G — r =
ȷ
—X:G — r (r ∈ G)
? (r ̸∈ G) X — r = X ? — r = ?

p?{‘i (Si):Li}i∈I ⊓ p?{‘j(Sj):L′j}j∈J
= p?{‘i (Si):Li}i∈I\J ∪ {‘j(Sj):L′j}j∈J\I ∪ {‘i (Si):Li ⊓ L′i}i∈I∩J

p!{‘i (Si):Li}i∈I ⊓ p!{‘i (Si):L′i}i∈I = p!{‘i (Si):Li⊓L′i}i∈I

—X:L ⊓ —X:L′ = —X:(L ⊓ L′) L ⊓ L = L

It gets complicated very quickly!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 6 22

Projection (Example)

Consider the following protocol

—X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff

Projecting r
—X:(q?REQ(bool):X) ⊓ (q?END():?)

= —X:q?

ȷ
REQ(bool):X
END() :done

ff

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 7 22

Projection (Example)

Consider the following protocol

—X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff

Projecting r
—X:(q?REQ(bool):X) ⊓ (q?END():?)

= —X:q?

ȷ
REQ(bool):X
END() :done

ff

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 7 22

Projection (Example)

Consider the following protocol

—X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff

Projecting r
—X:(q?REQ(bool):X) ⊓ (q?END():?)

= —X:q?

ȷ
REQ(bool):X
END() :done

ff

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 7 22

Processes and Typing

Process P := p ! ‘⟨e⟩:P Send a message.
|
X
i∈I

p?‘i (xi):Pi Receive a message.

| if e thenP elseP ′ Conditional process.
| recX : P Recursive process.
| X Recursion variable.
| done Inactive process.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 8 22

Process Typing (simplified)

Once we have local types, process typing is simple:

T-SEND
Γ ⊢ P : Li Γ ⊢ e : Si i ∈ I
Γ ⊢ q ! ‘i ⟨e⟩:P : (p!{‘i (Si):Li}i∈I)

T-RECV
∀(i ∈ I); [Γ; xi : Si ⊢ Pi : Li] z

Γ ⊢
X
i∈I

p?‘i (xi):Pi : (p?{‘i (Si):Li}i∈I)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 9 22

Process Typing (simplified)

Once we have local types, process typing is simple:

T-SEND
Γ ⊢ P : Li Γ ⊢ e : Si i ∈ I
Γ ⊢ q ! ‘i ⟨e⟩:P : (p!{‘i (Si):Li}i∈I)

T-RECV
∀(i ∈ I); [Γ; xi : Si ⊢ Pi : Li] z

Γ ⊢
X
i∈I

p?‘i (xi):Pi : (p?{‘i (Si):Li}i∈I)

Local types and processes are so similar that
some developments omit them, and

projection produces directly processes.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 9 22

Process Typing (simplified)

Once we have local types, process typing is simple:

T-SEND
Γ ⊢ P : Li Γ ⊢ e : Si i ∈ I
Γ ⊢ q ! ‘i ⟨e⟩:P : (p!{‘i (Si):Li}i∈I)

T-RECV
∀(i ∈ I); [Γ; xi : Si ⊢ Pi : Li] z

Γ ⊢
X
i∈I

p?‘i (xi):Pi : (p?{‘i (Si):Li}i∈I)

Local types and processes are so similar that
some developments omit them, and

projection produces directly processes.Deconfined Global Types for Asynchronous
Sessions

Francesco Dagnino1, Paola Giannini2, and Mariangiola Dezani-Ciancaglini3

1 DIBRIS, Università di Genova, Italy
2 DiSIT, Università del Piemonte Orientale, Alessandria, Italy

3 Dipartimento di Informatica, Università di Torino, Italy

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 9 22

Problems with Classical Formulation

1. Too syntactic:
• Processes and local types must align
• Too restrictive, rules out correct processes
• . . .

2. Unnecessarily complex:
• Hard to implement/mechanise, e.g.:

– Use of runtime coinductive global types: Our PLDI 2021 paper, Jacobs et al.
(2022).

– Graph-based reasoning and decision procedure for the equality of recursive types:
Tirore et al. (2023)

• Hard to extend
3. Imprecise (coinduction, safety)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 10 22

Example of Imprecision in Classical MPST

Equirecursion: “We identify —X:G with [—X:G=X]G”

Common statement in proofs about MPST, but...
1. The rules specify how to deal with variables X
2. The rules specify when and how to unfold —X:G

Moreover: Equirecursion alone distinguishes too many protocols that “are the same”:

p → q : p′ → q′ : G ̸= p′ → q′ : p → q : G

Mechanising the classical theory of MPST is notoriously hard, in part due to this.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 11 22

Another Example of Imprecision in Classical MPST

This source of imprecision did cause flawed proofs in the literature.

Preservation theorem:

’(L1; : : : ; Ln) ∧ (P1 | : : : | Pn
¸−→ P ′

1 | : : : | P ′
n)

∧(⊢ P1 : L1 ∧ : : : ∧ ⊢ Pn : Ln)
=⇒ ∃L1′ · · ·Ln′ ∧ (L1 | : : : | Ln

¸−→ L′1 | : : : | L′n)
∧(⊢ P ′

1 : L1
′ ∧ : : : ∧ ⊢ P ′

n : Ln
′)

Implicit assumption:
(∀i ; Li = G — ri) =⇒ ’(L1; : : : ; Ln)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 12 22

Another Example of Imprecision in Classical MPST

This source of imprecision did cause flawed proofs in the literature.

Preservation theorem:

’(L1; : : : ; Ln) ∧ (P1 | : : : | Pn
¸−→ P ′

1 | : : : | P ′
n)

∧(⊢ P1 : L1 ∧ : : : ∧ ⊢ Pn : Ln)
=⇒ ∃L1′ · · ·Ln′ ∧ (L1 | : : : | Ln

¸−→ L′1 | : : : | L′n)
∧(⊢ P ′

1 : L1
′ ∧ : : : ∧ ⊢ P ′

n : Ln
′)

Implicit assumption:
(∀i ; Li = G — ri) =⇒ ’(L1; : : : ; Ln)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 12 22

Another Example of Imprecision in Classical MPST

This source of imprecision did cause flawed proofs in the literature.

Preservation theorem:

’(L1; : : : ; Ln) ∧ (P1 | : : : | Pn
¸−→ P ′

1 | : : : | P ′
n)

∧(⊢ P1 : L1 ∧ : : : ∧ ⊢ Pn : Ln)
=⇒ ∃L1′ · · ·Ln′ ∧ (L1 | : : : | Ln

¸−→ L′1 | : : : | L′n)
∧(⊢ P ′

1 : L1
′ ∧ : : : ∧ ⊢ P ′

n : Ln
′)

Implicit assumption:
(∀i ; Li = G — ri) =⇒ ’(L1; : : : ; Ln)

This assumption is wrong (Scalas & Yoshida, POPL’19)!
• Trivially holds for the basic case.
• Breaks as soon as you extend the theory slightly (e.g. full

merge).

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 12 22

A Few Attempts at Simplifying the Theory

Deconfined Global Types for Asynchronous
Sessions

Francesco Dagnino1, Paola Giannini2, and Mariangiola Dezani-Ciancaglini3

1 DIBRIS, Università di Genova, Italy
2 DiSIT, Università del Piemonte Orientale, Alessandria, Italy

3 Dipartimento di Informatica, Università di Torino, Italy

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 13 22

A Few Attempts at Simplifying the Theory

Deconfined Global Types for Asynchronous
Sessions

Francesco Dagnino1, Paola Giannini2, and Mariangiola Dezani-Ciancaglini3

1 DIBRIS, Università di Genova, Italy
2 DiSIT, Università del Piemonte Orientale, Alessandria, Italy

3 Dipartimento di Informatica, Università di Torino, Italy

Less Is More: Multiparty Session Types Revisited

ALCESTE SCALAS, Imperial College London, UK
NOBUKO YOSHIDA, Imperial College London, UK

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 13 22

A Few Attempts at Simplifying the Theory

Deconfined Global Types for Asynchronous
Sessions

Francesco Dagnino1, Paola Giannini2, and Mariangiola Dezani-Ciancaglini3

1 DIBRIS, Università di Genova, Italy
2 DiSIT, Università del Piemonte Orientale, Alessandria, Italy

3 Dipartimento di Informatica, Università di Torino, Italy

Less Is More: Multiparty Session Types Revisited

ALCESTE SCALAS, Imperial College London, UK
NOBUKO YOSHIDA, Imperial College London, UK

Less is More Revisited
Association with Global Multiparty Session Types

Nobuko Yoshida(B) and Ping Hou

University of Oxford, Oxford, UK
{nobuko.yoshida,ping.hou}@cs.ox.ac.uk

Abstract. Multiparty session types (MPST) [12] provide a type disci-
pline where a programmer or architect specifies a whole view of com-
munications as a global protocol, and each distributed program is locally
type-checked against its end-point projection. After 10 years from the
birth of MPST, Scalas and Yoshida [18] discovered that the proofs of
type safety in the literature which use the end-point projection with
mergeability are flawed. After this paper, researchers wrongly believed
that the end-point projection (with mergeability) was unsound. We cor-
rect this misunderstanding, proposing a new general proof technique for
type soundness of multiparty session π-calculus, which uses an associa-
tion relation between a global type and its end-point projection.

1 Introduction

Today many computer science technologies are centred on data science and
machine learning, which fall within the field of technology used to leverage data
for creating and innovating products, services, and infrastructural systems in
society. In 1996, C. B. Jones, together with J.R. Gurd, predicted this era of
data. In their article, the Global-yet-Personal Information System (GyP

∫
IS), in

Computing Tomorrow: future research directions in computer science edited by
Wand and Milner [9], they argued that extracting meaning from data, and under-
standing and building methods that utilise data to inform predictions will be the
central concerns in future computing, proposing the system called GyP

∫
IS. The

thesis of GyP
∫
IS is that data should be globally consistent, open for everybody,

and yet personalised (structured with respect to an individual need). They pre-
dicted that future systems would go beyond the scope of the known programming
paradigm, and argued for the importance of describing and formally specifying
interactive behaviours.

Multiparty session types (MPST) [12,13] represent a type discipline which
attempts to take a step to meet the GyP

∫
IS challenge, by offering a program-

ming framework to guarantee a global consistency among interactive agents or
processes in the open system [10,19]. It facilitates the description, specification

Work supported by: EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1,
EP/X015955/1, NCSS/EPSRC VeTSS, and Horizon EU TaRDIS 101093006.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

A. Cavalcanti and J. Baxter (Eds.): The Practice of Formal Methods, LNCS 14781, pp. 268–291, 2024.

https://doi.org/10.1007/978-3-031-66673-5_14

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 13 22

Our Approach: Synthetic Typing

Synthetic Behavioural Typing: Sound, Regular
Multiparty Sessions via Implicit Local Types
Sung-Shik Jongmans #

Department of Computer Science, Open University, Heerlen, The Netherlands
Centrum Wiskunde & Informatica (CWI), NWO-I, Amsterdam, The Netherlands

Francisco Ferreira #

Department of Computer Science, Royal Holloway, University of London, UK

V1.1

A
rt
if

ac
ts Availa

b
le

OOP

F
u

n
ctional

V

1
.1

A
rt
if

ac
ts Evalua

te
d

OOP

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 14 22

Our Approach: Synthetic Typing

Synthetic Behavioural Typing: Sound, Regular
Multiparty Sessions via Implicit Local Types
Sung-Shik Jongmans #

Department of Computer Science, Open University, Heerlen, The Netherlands
Centrum Wiskunde & Informatica (CWI), NWO-I, Amsterdam, The Netherlands

Francisco Ferreira #

Department of Computer Science, Royal Holloway, University of London, UK

V1.1

A
rt
if

ac
ts Availa

b
le

OOP

F
u

n
ctional

V

1
.1

A
rt
if

ac
ts Evalua

te
d

OOP

Our Contributions:
• “Free” typing from being tied up to the syntax of local types.
• An MPST system that avoids projection/merging/etc.
• Type-checking against arbitrary (well-formed) LTSs.
• Well-formedness/deadlock-freedom is decided by typeability, not by

projectability.
• Mechanisation in Agda.
• Implementation in Rascal.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 14 22

(Slightly Simplified) Core SyntheticTyping Rules

T-SEND
Γ ⊢ P : G′ — p G

p→q:‘(S)−−−−−→ G′ Γ ⊢ e : S
Γ ⊢ q ! ‘⟨e⟩:P : G — p

T-RECV
(G allows p → q : ‘j , for some j) ∀ i G′ (G

q→p:‘i (Si)−−−−−−→ G′);
ˆ
Γ; xi : Si ⊢ Pi : G′ — p

˜
Γ ⊢

X
i∈I

q?‘i (xi):Pi : G — p

T-SKIP

(It is safe for p to wait in G) ∀(G {p}−−→ ∗G′ {p}−−→);
ˆ
Γ ⊢ P : G′ — p

˜
Γ ⊢ P : G — p

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 15 22

Synthetic Behavioural Typing

Key idea: The syntax of G is irrelevant!

G is just the state of a labelled transition system (LTS)!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 16 22

Synthetic Behavioural Typing

Key idea: The syntax of G is irrelevant!

G is just the state of a labelled transition system (LTS)!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 16 22

Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.

But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

Well-behavedness:
1. Sender determinacy: If a state allows multiple transitions, these cannot have the same

receiver but different senders.
2. Determinism: A state can have at most one transition with the same action label.
3. Conditional commutativity: In any state, if a later independent action has an earlier

enabled branch, it can be commuted earlier.
4. Diamond property.
5. "Stepback" property? (not in the paper – likely an artifact of our mechanisation only used

to prove one minor case in our mechanisation). “Bisimilarity is preserved when moving to
past states” (?)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 17 22

Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.

But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

Well-behavedness:
1. Sender determinacy: If a state allows multiple transitions, these cannot have the same

receiver but different senders.
2. Determinism: A state can have at most one transition with the same action label.
3. Conditional commutativity: In any state, if a later independent action has an earlier

enabled branch, it can be commuted earlier.
4. Diamond property.
5. "Stepback" property? (not in the paper – likely an artifact of our mechanisation only used

to prove one minor case in our mechanisation). “Bisimilarity is preserved when moving to
past states” (?)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 17 22

Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.

But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

Well-behavedness:
1. Sender determinacy: If a state allows multiple transitions, these cannot have the same

receiver but different senders.
2. Determinism: A state can have at most one transition with the same action label.
3. Conditional commutativity: In any state, if a later independent action has an earlier

enabled branch, it can be commuted earlier.
4. Diamond property.
5. "Stepback" property? (not in the paper – likely an artifact of our mechanisation only used

to prove one minor case in our mechanisation). “Bisimilarity is preserved when moving to
past states” (?)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 17 22

Well-behavedness
Our type system is parameterised by an LTS, where labels must specify send/receive interactions.

But not all LTSs are valid types! We can only guarantee safety/liveness for well-behaved LTSs.

Well-behavedness:
1. Sender determinacy: If a state allows multiple transitions, these cannot have the same

receiver but different senders.
2. Determinism: A state can have at most one transition with the same action label.
3. Conditional commutativity: In any state, if a later independent action has an earlier

enabled branch, it can be commuted earlier.
4. Diamond property.
5. "Stepback" property? (not in the paper – likely an artifact of our mechanisation only used

to prove one minor case in our mechanisation). “Bisimilarity is preserved when moving to
past states” (?)

Every syntactic global type in the classical theory of
MPST is well-behaved!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 17 22

Example

G = —X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff
We are going to typecheck a process implementing role r...
but first, let’s get rid of the syntax for G!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 18 22

Example

G = —X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff
We are going to typecheck a process implementing role r...
but first, let’s get rid of the syntax for G!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 18 22

Example: Semantic View of Global Types

—X:p → q :
ȷ

REQ(nat):q → r : REQ(bool):X
END() :q → r : END():done

ff

1start 2

4 5

p→q : REQ(nat)
p→q : END()

q→ r : REQ(bool)

q→ r : END()

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 19 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;
Our goal is to show that ⊢ P : 1 — r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8><>:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9>=>;

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_): done

9=;

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8><>: q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9>=>;

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8><>:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9>=>;

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8><>:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9>=>;
· ⊢ recX : . . . : 1 — r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8><>:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9>=>;
X : 1 ⊢ . . . : . . . — r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8><>:q?REQ(x):print(x): recX :

P(
q?REQ(x):process(x): X

q?END(_):done

)
q?END(_):done

9>=>;
X : 1 ⊢ . . . : . . . — r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8><>:q?REQ(x):print(x): recX :

P(
q?REQ(x):process(x): X

q?END(_):done

)
q?END(_):done

9>=>;
X : 1 ⊢ . . . : . . . — r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;
X : 1 ⊢ . . . : . . . — r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Example: Process & Typing
1 2

4 5

p→q : REQ(nat)p→q : END()

q→ r : REQ(bool)

q→ r : END()

P =
P8<:q?REQ(x):print(x): recX :

Pȷ
q?REQ(x):process(x): X
q?END(_):done

ff
q?END(_):done

9=;
X : 1 ⊢ X : 1 — r

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 20 22

Properties of Synthetic MPST

Some key lemmas:

• If G ∼ G′ and Γ ⊢ P : G — r then Γ ⊢ P : G′ — r

• If G ¸−→ G′, with r ̸∈ ¸, and Γ ⊢ P : G — r, then Γ ⊢ P : G′ — r

These are needed for proving safety and liveness theorems (i.e. preservation andf progress).
Suppose that M is a collection of processes, and G is well-behaved:

• If ⊢ M : G and M ¸−→ M′, then there exists G′ such that G ¸−→ G′ and ⊢ M′ : G′

• If ⊢ M : G and G is not ended, then there exists M′ and ¸ such that M ¸−→ M′:

Finally, we proved that for all global type G, the LTS of G is well-behaved.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 21 22

Properties of Synthetic MPST

Some key lemmas:

• If G ∼ G′ and Γ ⊢ P : G — r then Γ ⊢ P : G′ — r

• If G ¸−→ G′, with r ̸∈ ¸, and Γ ⊢ P : G — r, then Γ ⊢ P : G′ — r

These are needed for proving safety and liveness theorems (i.e. preservation andf progress).
Suppose that M is a collection of processes, and G is well-behaved:

• If ⊢ M : G and M ¸−→ M′, then there exists G′ such that G ¸−→ G′ and ⊢ M′ : G′

• If ⊢ M : G and G is not ended, then there exists M′ and ¸ such that M ¸−→ M′:

Finally, we proved that for all global type G, the LTS of G is well-behaved.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 21 22

Properties of Synthetic MPST

Some key lemmas:

• If G ∼ G′ and Γ ⊢ P : G — r then Γ ⊢ P : G′ — r

• If G ¸−→ G′, with r ̸∈ ¸, and Γ ⊢ P : G — r, then Γ ⊢ P : G′ — r

These are needed for proving safety and liveness theorems (i.e. preservation andf progress).
Suppose that M is a collection of processes, and G is well-behaved:

• If ⊢ M : G and M ¸−→ M′, then there exists G′ such that G ¸−→ G′ and ⊢ M′ : G′

• If ⊢ M : G and G is not ended, then there exists M′ and ¸ such that M ¸−→ M′:

Finally, we proved that for all global type G, the LTS of G is well-behaved.

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 21 22

Contributions

• Special case: MPST system with global types (without projection, merging, local types)
• Special case: Expressive enough to capture all benchmarks of (Scalas & Yoshida 2019)

• General case: MPST system with well-behaved LTSs
• Type soundness – much simpler than the literature (roughly 550 LOC of Agda!)

• Artifact: Full mechanisation in Agda.
• Artifact: Implementation of the special case in Rascal (Thanks, Sung!)

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 22 22

Contributions

• Special case: MPST system with global types (without projection, merging, local types)
• Special case: Expressive enough to capture all benchmarks of (Scalas & Yoshida 2019)

• General case: MPST system with well-behaved LTSs
• Type soundness – much simpler than the literature (roughly 550 LOC of Agda!)

• Artifact: Full mechanisation in Agda.
• Artifact: Implementation of the special case in Rascal (Thanks, Sung!)

THANKS!

PLAS Seminar, 19-01-2026 David Castro-Pérez A Synthetic Reconstruction of Multiparty Session Types 22 22

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

